Relating $p$-Adic eigenvalues and the local Smith normal form

نویسندگان

  • Mustafa Elsheikh
  • Mark Giesbrecht
چکیده

Conditions are established under which the p-adic valuations of the invariant factors (diagonal entries of the Smith form) of an integer matrix are equal to the p-adic valuations of the eigenvalues. It is then shown that this correspondence is the typical case for “most” matrices; precise density bounds are given for when the property holds, as well as easy transformations to this typical case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monodromy Eigenvalues and Zeta Functions with Differential Forms

For a complex polynomial or analytic function f , there is a strong correspondence between poles of the so-called local zeta functions or complex powers ∫ |f |2sω, where the ω are C∞ differential forms with compact support, and eigenvalues of the local monodromy of f . In particular Barlet showed that each monodromy eigenvalue of f is of the form exp(2π −1s0), where s0 is such a pole. We prove ...

متن کامل

Banach-Hecke Algebras and p-Adic Galois Representations

In this paper, we take some initial steps towards illuminating the (hypothetical) p-adic local Langlands functoriality principle relating Galois representations of a p-adic field L and admissible unitary Banach space representations of G(L) when G is a split reductive group over L. 2000 Mathematics Subject Classification: 11F80, 11S37, 22E50

متن کامل

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

On eigenvalues of p-adic curvature

We study the eigenvalues of the p-adic curvature transformations on buildings. In particular, we determine the maximal eigenvalues of these transformations.

متن کامل

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1401.1773  شماره 

صفحات  -

تاریخ انتشار 2014